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D E T E R M I N A T I O N  OF THERMAL WAVE DISTRIBUTIONS 
BY THE FINITE ELEMENT M E T H O D  

M. D. MIKHAILOV,* G. COMINI,t S. DEL GIUDICE~ and G. P. RUNCHI÷ 

(Receit, ed 19 March 1976) 

Abstract- Quasi-stationary heat-conduction problems are formulated in such a way as to allow a direct 
solution by the finite element method without the use of recurrence relations. Accuracy and versatility 

of the technique proposed in the text are illustrated by several examples of application. 

N O M E N C L A T U R E  

a, thermal diffusivity [-m2/s]; 
Bi, = =L/k, Biot criterion; 
c, specific heat [J/kg. K 1; 
i, = x/( - 1), imaginary unit; 
I, imaginary part of complex amplitude 0 [°C]; 
k, thermal conductivity [W/m. K]; 
/x, It, direction cosines of the outward normal to 

the boundary surface; 
L, slab thickness [m]; 
Pd, = toL2/a, Predvoditelev criterion; 
r, z, cylindrical coordinates [m 1; 
R, real part of complex amplitude 0 [°C]; 
t, time [s]; 
t~, time lag of temperature oscillations [s]: 
7",. temperature [°C] ; 
x, y, Cartesian coordinates [m]. 

Greek symbols 

~, convective heat-transfer coefficient 
[W./m 2. K]; 

F, boundary surface [m2]; 
0, complex amplitude of temperature 

oscillations [°C]; 
p, density [kg/m 3] ; 
~, phase angle of temperature oscillations 

[radl;  
~, circular frequency [rad/s]; 
fL domain of definition [-m3]. 

Subscripts 

a, ambient; 
x, y, in the (x, y) direction; 
w, surface. 

I N T R O D U C T I O N  

SOLUTION of heat-conduction problems subjected to a 
boundary condition which is a periodic function of 
time is of interest in many fields of engineering. 
Applications of great practical importance are the 
calculations of heating and cooling loads in buildings 
exposed to periodic variations of the outside air tem- 
perature while the inside air temperature is maintained 
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constant [11 . Examples of considerable significance 
occur also in the investigation of the oscillatory 
behaviour ofinternal combustion engine cylinder walls 
and in the study of the penetration of the daily and 
annual temperature cycles in the earth [2]. 

Usually the analytical solution of problems on 
thermal waves is given for the quasi-stationary state 
since, in most engineering applications, the process 
continues so long, or the transient decays so rapidly, 
that the initial temperature distribution has very little 
influence on the process behaviour [2-51. In cases like 
these, to obtain only the sustained, periodic response 
of the system to a periodic disturbance allows a great 
saving in time and effort at the expense ofno significant 
loss in accuracy. 

The above arguments apply even more to problems 
where complex geometrical configurations and/or the 
presence of composite regions make recourse to 
numerical solutions mandatory. In fact, both finite 
difference and finite element solutions of initial value 
problems involve step-by-step procedures in which re- 
currence relations are used to move ahead in time. 
Therefore, if only the quasi-stationary state is of 
interest, calculations must be repeated for the very large 
number of successive time intervals required to reach 
the steady-periodic condition. 

In this paper steady-state problems involving 
periodic boundary conditions are formulated in such 
a way as to allow a direct numerical solution without 
the use of recurrence relations. In the following sections 
finite element applications are stressed, but extensions 
to finite difference calculations are straightforward. 
Besides, minor modifications in the solution procedure 
would allow dealing with quasi-stationary fields pro- 
duced by periodic internal heat generation. 

Despite their practical importance, the problems 
considered here have received, until now, very little 
attention. A direct determination of periodic structural 
response has been proposed by Zienkiewicz in the 
context of finite elements ([6] p. 3471. However, in [6] 
reference is made chiefly to linear vibration theory and 
the corresponding formulation for heat conduction is 
invalidated by an algebraic error. 

M A T H E M A T I C A L  M O D E L  

The general class of problems dealt with in this paper 
can be described, in a two-dimensional region CL by 
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the following equation : 

F T  ( (  F I )  ," 
pc : . . . . . . . .  k., ~'.': 4- {' ~'T 

~t ?x , , dv~ k ' .  , ,~v.), (I 

Boundary conditions: 

"I'= Tw (2) 

on part of boundary Ft and: 

?T ,,'T 
k+ ~ • I, +k~ -= I ,+: t4T-T,3 = 0 (3) 

( X  t ?," 

on part of boundary F2 are assumed, where Tw and 
T~ are periodic functions of time of the form: 

Tw = 0w exp(ie~tl (41 

T~ = O,,exp(i¢,n). (5~ 

Then the quasi-stationary tield can be described. 
throughout ~, by the expression : 

T(x. y. t) = O(x. )'}exp(io~t}. (61 

When no restriction is placed on the shape of the 
periodic variation, the present analysis holds still good 
for every harmonic and the general solution can be 
obtained by superposition of the different modes. 

In equations (4)-(6) O(x, y) is a complex function: 

0 = R + i l  (7) 

whose modulus 101 = (R 2 + I2) ~ 2 and argument q0 = arc 
t a n ( l / R )  give, respectively, the amplitude and the phase 
angle of temperature oscillations. 

Substitution of(7} into (1). {2l. (3)leads to: 

. . . . .  + .- k~ ) - it:)pcO = 0 (8) 
cx ?x ?v , ?y /  

and: 

0 = 0 w  o n  I-~, (9) 

(O ?0 
k , v - I , + k , . z - l x + a [ O - O , ) = O  on 12. [10) 

('X " ('V+ 

If reference is made separately to the real and 
imaginary parts of O, we  obtain the following system 
of equations: 

?I ? (k.,. ?I 

%'|. I).  M I K I t . \ I I O \ .  ( ] .  ( ' { l ' , l lNI  S. I:,l I ( i l t D l (  ~ a r i d  (J.  P. R t r , a  l u  

complex geometrical contigurations have to be dealt 
with. recourse must be made to numerical ',,O]tllhHIs. 

(11) 

subjected to boundary conditions: 

R = Rw. I = lw (12)  

on F1 and : 

?R ?R } 
k,, ~ -  1,, + k v z-- 1,. + z~(R - R,,} = 0 

c x  O' (13) 
~1 ?1 

k~ fiTx l,, + ky ~,y ly + gt(l - l,,) = 0 

on F2. 
A few analytical solutions of problems ( l l l  (13) 

are available for one-dimensional geometries [2 5]. In 
the general case, where composite regions and.or 

FI"~I'I'F: EI.EMENI I.'ORML I,..VIIO\ 
The unknown functions R ~.tnd I can bc approxi- 

mated, throughout the solt,lion domain .Q. bx the 
rekttionships 

R -_- v ,X:,(+. v~R, L.x"IIR: 114~ 
/ = l  

and 

I g }- NiLx.5)I,= IN] I / ]  {15) 
i - I  

where Nj. or [NJ. are the usual shape functions delined 
piecewise element by element. R i and 1 i, or I R ', and ', I',. 
being the nodal parameters [6 9]. 

The 2n simultaneous equations allowing the solution 
for n values of Ri and n values of 1j are obtained using 
Galerkin's method as shown in I-7-9]. Typically. for 
point j ( j  = I. n). the integrals over the domain ~ of 
the products of the weighting function N i by the 
residual resulting from substitution of equations {14). 
(15) into (11) are equated to zero: 

I N ,  ~.x 

n 

~-,)pc J,-I ~" :\'klkld~) = 0 

- L , Ni ~x 
,3 2 , ' 

n 

-.~pc y. :\'~Rk td~) = 0 
k I . . . .  

(161 

After using Green's theorem, in order to avoid second 
derivatives in the integrals imposing unnecessary con- 
tinuity conditions between elements, equations I 16) are 
transformed into 

• . " , n " • ii 
J l ( i ' J  ( ' ~ " k , ( " J ' ¢  - ( ' : ' : k '  

. . k,, Fv ) R k d ~  
UX . , 

~i[ : n 

N w L .'Vk Ikdf~ t) 
--(!) "~ 11 t I = I 

I 

i; ) -- N 2 :t N, I~ -- l,, d V ~1 

I 

-~') N j p c  ~. ,'%,Rkdf~ = 0 
~ k 1 

(17l 

where (j = 1, n). 
Equations 117) can be written in matrix form as: 

-,,,[c] - [ K ]  I ( ',l', - ' ,El: 
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Typical matrix elements are: 

~ [(?Nj, dNk 8Nj k ~Nk ]d~  
K j k = ~  I | z - k x ~  + ~ -  

-Ol~'\+'x cx <v "~y J 

+ ~ jr" N~ztNkd~; (19) 

J NjpcNk d~;  f20) C jk = E ~1" 

FRj = ~ fr. Nj~tR,,dF; (21) 

FI~ = E I N j ~ l . d r  (22) 
,Jr" 

where (j, k = 1, n). 
In the above the summations are taken over the 

contributions of each element, Q~ is the element region 
and F" refers only to elements with external boundaries 
on which conditions (13) are specified. 

The coupled system represented by equation (18) is a 
symmetric, "'two degrees of freedom" system. 

The FORTRAN program for implementing and 
solving the system of equations (18) is the same, but 
for minor modifications, which is referred to in [8, 9] 
where different coupled problems are investigated. 

Isoparametric elements, numerical integration of 
equations (19)-(22) and a Gaussian elimination tech- 
nique in the inversion of the "stiffness" matrix at the 
left hand side of equation (18) are all typical features 
of the code utilized [8, 9]. 

The program can also deal with axialsymmetric 
problems by assuming: x-= r, y =  z and utilizing 
"equivalent" values of thermal properties and transfer 
coefficients: keq = rk, peeq = rpc, ~t~q = rot (see for 
instance [6] p. 302; [10] p. 252). 

Output of data has been modified to include, for 
each node, values of R. I, modulus: (R2 + I2)~e2 phase: 
arctan(l/R) and time lag: t,, of temperature oscillations. 

At the nodes where boundary conditions (2) or (3) 
are specified, amplitude and time lag of heat flux 
oscillations are also computed. 

SOME ILLUSTRATIVE EXAMPLES 
The first two examples are of a comparative nature 

and deal with simple configurations for which ana- 
lytical solutions exist. The last three examples are more 
general and illustrate practical applications. 

Thermal waves in infinite plates 
Analytical solutions for quasi-stationary one-dimen- 

sional heat-conduction processes, subjected to bound- 
ary conditions which are periodic functions of time, 
have been obtained by several authors (see, for example 
[4, 5] ). 

In the present context these problems have been 
solved with reference to a rectangular configuration 
whose boundaries are non-conductive except at the 
face x = O, where boundary conditions (2) or (3) apply. 

Comparisons with analytical solutions are presented 
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in Table 1 for the case: 

a = k/pc = 1 m2/s, o) = 1 rad/s, L = 10m, 

i.e. Pd = oL2/a = 100. 

Reference is made to boundary conditions of the 
first kind: J0wl = I~C, ~w = 0 and to boundary con- 
ditions of the third kind: 10ol = I°C, ~oo=0, ~ =  
1 W/m 2. K, i.e. Bi = o~L:.'k = 10. 

Despite the rather coarse mesh utilized (5 parabolic 
elements, 28 nodal points) agreement between com- 
puted and analytical solutions is quite good. 

Thermal waves in a composite junction 
Equipment selection for air conditioning systems is 

often based on the assumption of maximum cooling 
loads occurring at the same time in all conditioned 
spaces. This approach was developed when all design 
calculations were performed manually. Now with com- 
puters used for routine design calculations, it is 
practical to make a more extensive design analysis. 
For example, heat gains by conduction through one- 
dimensional composite walls can be computed, for 
variable operating conditions, utilizing the transfer 
function method as suggested in [1]. 

However, one-dimensional models cannot always 
represent adequately civil engineering structures. Pre- 
fabrication techniques and the consequent large scale 
utilization of the same components in different build- 
ings often make a finite element analysis of periodic 
thermal fields the most economic choice. 

To illustrate the possibilities available in this type 
of analysis, amplitude and time lag distributions of 
temperature oscillations in a composite junction are 
first investigated. 

The mesh utilized is represented in Fig. 1 : 16 para- 
bolic elements and 67 nodal points are used. Far away 
boundaries are substituted with non conductive bound- 
aries placed at a reasonable distance from the junction. 
Because of the existing symmetry reference can be made 
only to a half of the entire domain. 

+ - ,  

~ ,- t -  -i":- ~i",7 , : /~::;? ' "i i ~ ~::;;'qS!:,;/,~t6. 

io9 tin... 

D polystyrene 

[ ~  concrete 

~'/7//A non-conductive boundary 

FIG. 1. Thermal waves in a composite junction. Far away 
boundaries are substituted with non-conductive boundaries 
placed at a relatively large distance from the junction. 
Because of the existing symmetry only half of the domain is 
investigated using 16 parabolic elements and 67 nodal 

points. 
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Fl(i. 2. Thermal waves in a composite junction. Convective 
heat transfer is assumed both at the internal and at the 
external surface: internal surface: a = 15W m2.K. 10,! = 
0:C: external surface: :~ = 25W m -~. K, 10,; = 20:C, ~o,, = 0. 
eJ = 7.27 × 10-~ rads.  

l h e  following estimates of thermal properties are made: 
concrete: k~ = k~ = 1 .75Wm. K. p c =  1.85 × 106 j . .m 3. K: 
polystyrene: k., = kr = 0 .039W:mK.  p c =  1.6 x 10'*J m3.K. 
{al Amplitude of temperature oscillations. (bl Time lag of 

temperature oscillations. 

Convect ive  heat transfer is assumed bo th  at the 
external  and at the internal surface and the following 
est imates  of  physical  parameters  are made :  

- external  surface:  :~ = 2 5 W : m  2. K, 10,i = 20~C. 
o,,  = 0. ,,) = 7.27 x 10 ~ rad:s  (i.e. 2n ~o _-- 24hi :  

- - i n t e rna l  surface:  :~ = 15 W :m- ' '  K. 10,,I = 0':C. 
- - conc re t e :  k~ = k~. = 1.75 W i n .  K, 

,o, = 1.85 x 106 J.:m 3. K: 

• polystyrene:  k, = k~. = 0.039 w i n .  K, 
pc = 1.6 × 104J.:m 3. K. 

The ampl i tude  of  t empera tu re  oscil lat ions at any 
point  of  the doma in  is shown in Fig. 2(a) while t ime 

lags are represented  in Fig. 2(b). 
Ampl i tude  and t ime lag of  heat flux oscil lat ions were 

also calculated at nodal  points  on the surfaces with 

convective boundary  condi t ions  specified. 
In regions where one-d imens iona l  fields develop.  

there exists good  agreement  be tween the values of  tern- 

perature  and heat flux thus calculated and the analytical 
solut ions available for one-d imens iona l  composi te  
layers [ t. 5]. 

T h e r m a l  w a t ' e s  in corner  jltnctiotl.s 

Finite c lement  analyses of thermal  , ,ave  distr ibu- 
t ions in bui lding c o m p o n e n t s  are used, in the following 

example,  to illustrate the effects of  thermal  bridges on 
heat gains by conduc t ion  th rough  mult i- layered ex- 
terior walls. 

Here  we investigate the thermal  behaviour  of  two 
different corner  junct ions .  In the first cons t ruc t ion  only 

concrete  is utilized in the corner  region. In the second 
cons t ruc t ion  instead, polystyrene insulat ion is not  in- 
tcr rupled in the corner  region. 

In both  cases the same mesh, with 15 parabol ic  

e lements  and 62 nodal  points,  is used (see Fig. 3). The 
same values of  thermal  proper t ies  and transfer par-  

ameters  referred to in the previous example  are chosen. 
in par t icular  wc have again:  

external surface:  :~ = 2 5 W : m  2. K. 10,,I = 20 C. 
o,, = 0. ~,~ = 7.27 × 10 ~ r a d s :  

.... internal surface: ~ = 1 5 W . m " .  K. 10, ~ = 0 C. 

The  results obta ined are repor ted  in Fig. 4. As it can 
bc seen. the ampl i tude  of t empera ture  oscil lat ions in 
the corner  region is dramat ica l ly  reduced by the 
polystyrene insulation. As a consequence,  the ampli-  
tude of  heat flux oscil lat ions at the internal edge is 

reduced by a factor of  five with respect  to the complete ly  
insulated constrt ,  ctkm. 

Ampl i tude  and t ime lag of  t empera ture  oscil lat ions 
can be de te rmined  also using finite e lements  as sug- 
gested in [7] for t ransient  field problems.  

Obviously .  s tep-by-s tep  procedures  are not  a good 

choice in the solut ion of  quas i -s ta t ionary  problems.  
Hov, ever, in the present  context  they allow a com- 

par ison of  well es tabl ished numerical  techniques  with 
the direct me t hod  p roposed  in this paper.  

Reference was made  to the not  complete ly  insulated 

cons t ruc t ion  and calculat ions were carried on for three 
one  day tempera ture  cycles, s tar t ing from cons tan t  
t empera ture  values and using 300s t ime-steps.  After 
48 h. initial condi t ions  do  not have any influence on 

Table 1. Analytical (AN~ and finite element (FEJ soh, tions compared for boundary conditions 
of the first kind: ':0~ I = I C, ~p, = 0 and Pd = ~.~/_2 a = I(X); and third kind: I0,1 = 1 ('. o~ = 0. 

Bi = ~ t L k  = 10 and Pd ~ 100 

1st kind b.c. 3rd kind b.c. 

x 1. 101q CI ~piradl :011' ('J o(rad) 

AN FE AN FE AN FE AN FE 

0.0 1.00000 1.00000 0.00000 0.00000 0.54120 0.54424 0.39270 0.39264 
0.1 0.49307 0.49453 0.70711 0.70653 0.26685 0.26914 1.0998 1.0992 
0.2 0.27312 0.24016 1.7172 1 . 4 3 3 3  0.13157 0.13070 1.8069 1.8259 
0.3 0.11987 0.11876 2.1195 2.1398 0.06487 0.06463 2.5140 2.5324 
0.4 0.05910 0.05767 2.8293 2.8667 0.03198 0.03138 3.2213 3.2593 
0.5 0.02916 0.02854 3 . 5 3 6 1  3.5737 0.01578 0:01553 3.9288 3.9663 
0.6 0.01441 0.01389 4.2406 4.2981 0.00780 0.00756 4.6333 4.6907 
0.7 0.00704 0.00681 4.9368 4.9936 0.00381 0.00371 5.3296 5.3862 
0.8 0.00330 0.00314 5 . 6 7 6 1  5.7497 0.00178 0.00171 6.0688 6.1423 
0.9 0.00184 0.00174 6.5913 6.6660 0.00099 0.00095 6.9840 7.0586 
1.0 0.00170 0.00123 7 . 0 7 1 1  7.1664 0.00092 0.00087 7.4638 7.5590 
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~ ' / / / / / / /  non-conductive boundary 

FIG. 3. Thermal waves in a corner junction. The same finite element mesh (15 parabolic elements and 
62 nodal points) is used to study both the insulated and the not completely insulated construction. 
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FJ(i. 4. Thermal waves in a corner junction. Boundary conditions and thermal property values are the 
same referred to in Fig. 2 (a) and {b) Amplitude and time lag of temperature oscillations in the not 
completely insulated construction. (c) and (d) amplitude and time lag of temperature oscillations in the 

insulated construction. 



the first three significant ligures of computed tempera- 
ture values. Thus from that timc, amplitude and time 
lag of temperaturc oscillations can be confidently 
compared with those obtained from the direct solution. 
Thc results are presentcd in Tablc 2. where the rep- 

M .  l ) .  MII ' ; . I IAI I  I)~., (_l. ( 'OMl 'X i l ,  g. I)1.1 ( i l t  I)1('1! and (;. P. Rt ,,( H, 

as to alloy, a direct solution withotll the use e l  rcctil- 
r e n c e  relations. 

Accuracy and versatility of this technique ha,', been 
demonstrated in the context of finite clcmcnl analyses 
with reference Io several applications of great scientilic 
and practical interest. 

Table 2. Standard step-by-step IS) and direct iD) finite 
element solutions are compared for the rcprcsentativc 

points I VII shown in Fig. 3. The not comptetcl.,, insulated 
corner junction is considercd 

1011 (1 t,.,ls) 

Point S 1) S D 

I 17.97 17.96 2328 2327 
II l 5.97 15.97 5014 5013 
III 14.11 14.11 7808 7807 
IV 12.50 12.50 10 168 10 167 
V 10.91 10.91 12331 12329 
VI 7.103 7.102 16483 16480 
VII 3.710 3.711 20212 20209 

resentative points 1- VII shown in Fig. 3 are considered. 
As it can be seen, agreement is exceedingly good. 

Comparison of computing times is very much in 
favour of the direct solution technique that  uses about  
one tenth of the CPU  time required by the step-by-step 
procedure. 

CONCt.USlONS 

Quasi-stat ionary problems involving periodic 
boundary conditions can be formulated in such a way 
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DETERMINATION DES DISTRIBUTIONS D'ONDE THERMIQUE 
PAR LA METHODE DES ELEMENTS FINIS 

R£~sum6- Des probl,3mes de conduction thermique quasi stationnaire sent formules de telle sorte qu'unc 
solution est obtenue directement par la methode des 616ments finis sans le recours 'a des relations de 
r~zurrence. La pr~ision et la flexibilite de la technique propos~e sent illustr~s par diff6rents exemples 

d'application. 

BESTIMMUNG WELLENFORMIGER TEMPERATURVERTEILUNGEN 
MIT HILFE DER METHODE FINITER ELEMENTE 

Zusammeat'asstmg--Es werden quasi-station/ire W~rmeleitprobleme so formuliert, dab eine direkte 
L6sung mit Hilfe der Methode finiter Elemente m6glich ist, ohne dab Rekursionsformeln verwendet 
werden m/issen. Die Genauigkeit und Vielseitigkeit der vorgeschlagenen Methode wird anhand mehrercr 

Anwendungsbeispiele aufgezeigt. 

PACqET PACFIPE}IF_.IIEHH~I TEFI.I/OBOITt B O ~ H b l  
METO~OM K O H E q H b l X  ~.rlEMEHTOB 

Allul iol ,a lml; i -  ~ l a q H  KBa3HCTallHonapnol~ TeHJ'IOHpOBO21HOCTH c~opMyJIHpOBaHbl  TaKHM o 6 p a 3 o M ,  
tlTO OHH Jlonycxa]oT HenocI[~,CTBeHHOC petueHHe MeTO]IOM KOHetlHOI'O 3/IeMeHTa ~ 3  HCHOJ'Ib3OBaHH$1 
[~Kyp~HTHblX OTHOUleHHfl. TOqHOCTb H yHHBepca.rlbHOCTb npe2I.rloT~eHHOFO MeTo,aa H.qYI~OCTpHpy- 

IOTC~I Ha npaKTHqOCKHX npHMepax .  


