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DETERMINATION OF THERMAL WAVE DISTRIBUTIONS
BY THE FINITE ELEMENT METHOD
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Abstract - Quasi-stationary heat-conduction problems arc formulated in such a way as to allow a direct
solution by the finite element method without the use of recurrence relations. Accuracy and versatility
of the technique proposed in the text are illustrated by several examples of application.

NOMENCLATURE
a, thermal diffusivity [m?/s];
Bi, = aL/k, Biot criterion;
¢ specific heat [J/kg-K];
i, = ,/{—1), imaginary unit;
1, imaginary part of complex amplitude 6 [°C];
k, thermal conductivity [W/m-K];
I, l,, direction cosines of the outward normal to
the boundary surface;
L, slab thickness [m];
Pd, = wl?/a, Predvoditelev criterion;
r.z,  cylindrical coordinates [m];
R, real part of complex amplitude 8 [°C];
1, time [s];
Lo time lag of temperature oscillations [s]:
T, temperature [°C];
x,y, Cartesian coordinates [m].

Greek symbols

a, convective heat-transfer coefficient
[W/m?-K];

T, boundary surface [m?];

0, complex amplitude of temperature
oscillations [°C];

2. density [kg/m3];

o, phase angle of temperature oscillations
[rad]:

, circular frequency [rad/s];

Q. domain of definition [m?].

Subscripts

a, ambient;

x,y, inthe(x,y)direction;

W, surface.

INTRODUCTION

SOLUTION of heat-conduction problems subjected to a
boundary condition which is a periodic function of
time is of interest in many fields of engineering.
Applications of great practical importance are the
calculations of heating and cooling loads in buildings
exposed to periodic variations of the outside air tem-
perature while the inside air temperature is maintained
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constant [1]. Examples of considerable significance
occur also in the investigation of the oscillatory
behaviour of internal combustion engine cylinder walls
and in the study of the penetration of the daily and
annual temperature cycles in the earth [2].

Usually the analytical solution of problems on
thermal waves is given for the quasi-stationary state
since, in most engineering applications, the process
continues so long, or the transient decays so rapidly,
that the initial temperature distribution has very little
influence on the process behaviour [2-5]. In cases like
these, to obtain only the sustained, periodic response
of the system to a periodic disturbance allows a great
saving in time and effort at the expense of no significant
loss in accuracy.

The above arguments apply even more to problems
where complex geometrical configurations and/or the
presence of composite regions make recourse to
numerical solutions mandatory. In fact, both finite
difference and finite element solutions of initial value
problems involve step-by-step procedures in which re-
currence relations are used to move ahead in time.
Therefore, if only the quasi-stationary state is of
interest, calculations must be repeated for the very large
number of successive time intervals required to reach
the steady-periodic condition.

In this paper steady-state problems involving
periodic boundary conditions are formulated in such
a way as to allow a direct numerical solution without
the use of recurrence relations. In the following sections
finite element applications are stressed, but extensions
to finite difference calculations are straightforward.
Besides, minor modifications in the solution procedure
would allow dealing with quasi-stationary fields pro-
duced by periodic internal heat generation.

Despite their practical importance, the problems
considered here have received, until now, very little
attention. A direct determination of periodic structural
response has been proposed by Zienkiewicz in the
context of finite elements ([6] p. 347). However, in [6]
reference is made chiefly to linear vibration theory and
the corresponding formulation for heat conduction is
invalidated by an algebraic error.

MATHEMATICAL MODEL

The general class of problems dealt with in this paper
can be described, in a two-dimensional region Q, by
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the following equation:
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Boundary conditions:

T=Ty (2)

on part of boundary I'y and:

T cr
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on part of boundary I, are assumed, where Ty and
T, are periodic functions of time of the form:

Ty = Oy explion) (4)
T, = O, explion). (5)

Then the quasi-stationary field can be described,
throughout Q, by the expression:

T(x. y. 1) = O(x. vyexplimt). (6)

When no restriction is placed on the shape of the
periodic variation. the present analysis holds still good
for every harmonic and the general solution can be
obtained by superposition of the different modes.

In equations (4) - (6) 0(x, 1) is a complex function:

0=R+il (N

whose modulus |8] = (R?+ 1%)' 2 and argument ¢ = arc¢
tan(I/R) give, respectively, the amplitude and the phase
angle of temperature oscillations.

Substitution of (7} into (1). (2). (3) leads to:
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and:
0=ty on I, (9)
6 0
ky k= L4 2(0—0,=0 on I (10)
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If reference is made separately to the real and
imaginary parts of fl, we obtain the following system
of equations:
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A few analytical solutions of problems (11) (13)
are available for one-dimensional geometries [2 5]. In
the general case, wherc composite regions and:or

complex geometrical configurations have to be dealt
with. recourse must be made to numerical solutions.

FINITE ELEMENT FORMU LATION
The unknown functions R and I can be approxi-

mated. throughout the solution demain Q. by the
relationships:
R=> Z Nx VIR, - [N]IR] (14)
1=
and
I = i N =[N {13
i-1

where N, or { N]. are the usual shape functions defined
pleccw1seelem<,ntb\ element. R;and [, or {R} and }/ .
being the nodal parameters [6 9].

The 2n simultaneous equations allowing the solution
for n values of R; and n values of I; are obtained using
Galerkin's method as shown in [7-9]. Typically. for
point j(j = L. n). the integrals over the domain Q of
the products of the weighting function .N; by the
residual resulting from substitution of equations (14).
{15)into (11) are equated to zero:
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After using Green's theorem. in order to avoid second
derivatives in the integrals imposing unnecessary con-
tinuity conditions between elements, equations (16) are
transformed into
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where (j = 1, n).
Equations (17) can be written in matrix form as:
[K] —e[C] |fIR}( _ { FRI
~o[C] —[K] !II,% -F Y
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Typical matrix elements are:
C [(6N; @N, éN; N,
" = Sk ——+ Lk, —— )dQ
Ki ZJ;;«(@X éx 8y T dy )

~

+ZJP ledeQ; (19)

Cjk = Z o ]Vj[)('Nk de ‘20)

FRjzz N,otR,,dI-, (21)
JI

FI,=3 | Naldr (22)

where (j, k = 1, n).

In the above the summations are taken over the
contributions of each element, Q° is the element region
and I'* refers only to elements with external boundaries
on which conditions (13) are specified.

The coupled system represented by equation (18) is a
symmetric, “two degrees of freedom” system.

The FORTRAN program for implementing and
solving the system of equations (18) is the same, but
for minor modifications, which is referred to in [8,9]
where different coupled problems are investigated.

Isoparametric elements, numerical integration of
equations (19)-(22) and a Gaussian elimination tech-
nique in the inversion of the “stiffness” matrix at the
left hand side of equation (18) are all typical features
of the code utilized [8,9].

The program can also deal with axialsymmetric
problems by assuming: x =r, y =z and utilizing
“equivalent” values of thermal properties and transfer
coefficients: ke, = rk, pceq=rpe, 2 =ra (see for
instance [6] p. 302; [10] p. 252).

Output of data has been modified to include, for
each node, values of R, I, modulus: (R? + 12)!/?, phase:
arctan(//R)and time lag: 1, of temperature oscillations.

At the nodes where boundary conditions (2) or (3)
are specified, amplitude and time lag of heat flux
oscillations are also computed.

SOME ILLUSTRATIVE EXAMPLES

The first two examples are of a comparative nature
and deal with simple configurations for which ana-
Iytical solutions exist. The last three examples are more
gencral and illustrate practical applications.

Thermal waves in infinite plates

Analytical solutions for quasi-stationary one-dimen-
sional heat-conduction processes, subjected to bound-
ary conditions which are periodic functions of time,
have been obtained by several authors (see, for example
[4.5]).

In the present context these problems have been
solved with reference to a rectangular configuration
whose boundaries are non-conductive except at the
face x = 0, where boundary conditions (2) or (3) apply.

Comparisons with analytical solutions are presented
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in Table 1 for the case:
a=k/pc =1m?/s, w= lradfs, L =10m,
ie. Pd = wl%/a = 100.

Reference is made to boundary conditions of the
first kind: |0y| = 1°C, @w = 0 and to boundary con-
ditions of the third kind: |0,] = 1°C, ¢,=0, 2=
1W/m?-K, ie. Bi = aL/k = 10.

Despite the rather coarse mesh utilized (5 parabolic
elements, 28 nodal points) agreement between com-
puted and analytical solutions is quite good.

Thermal wates in a composite junction

Equipment selection for air conditioning systems is
often based on the assumption of maximum cooling
loads occurring at the same time in all conditioned
spaces. This approach was developed when all design
calculations were performed manually. Now with com-
puters used for routine design calculations, it is
practical to make a more extensive design analysis.
For example, heat gains by conduction through one-
dimensional composite walls can be computed, for
variable operating conditions, utilizing the transfer
function method as suggested in [1].

However, one-dimensional models cannot always
represent adequately civil engineering structures. Pre-
fabrication techniques and the consequent large scale
utilization of the same components in different build-
ings often make a finite element analysis of periodic
thermal fields the most economic choice.

To illustrate the possibilities available in this type
of analysis, amplitude and time lag distributions of
temperature oscillations in a composite junction are
first investigated.

The mesh utilized is represented in Fig, 1: 16 para-
bolic elements and 67 nodal points are used. Far away
boundaries are substituted with non conductive bound-
aries placed at a reasonable distance from the junction.
Because of the existing symmetry reference can be made
only to a half of the entire domain.

/
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FiG. 1. Thermal waves in a composite junction. Far away

boundaries are substituted with non-conductive boundaries

placed at a relatively large distance from the junction.

Because of the existing symmetry only half of the domain is

investigated using 16 parabolic elements and 67 nodal
points.
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Fia. 2. Thermal waves in a composite junction. Convective
heat transfer is assumed both at the internal and at the
external surface: internal surface: a = 15W m? K, |0,! =
0°C: external surface: x = 25W m?- K, |#,i = 20°C. o, = 0.
@ =727 x10"*rad s.

The following estimates of thermal properties are made:
concrete: k, =k, =1.75W.m-K, pc =185 x10°J:m? K:
polystyrene: k, =k, =0039W-m K, pc=1.6 x10*] m* K.
{a) Amplitude of temperature oscillations. (b) Time lag of

temperature oscillations.

Convective heat transfer is assumed both at the
external and at the internal surface and the following
estimates of physical parameters are made:

- external surface: x = 25W-m?- K. |0,| = 20°C.

We=0.0=727%x10 “rad’s (ie. 2r « = 24 h);
—internal surface: x = 1SW:m?- K. |4,| = 0°C.
—concrete: k, =k, = 1.75W:m-K,

pe=185x10°]m3-K:

polystyrene: k, = k, = 0.039 W:m- K.

pe=16x10*Jm3 K.

The amplitude of temperature oscillations at any
point of the domain is shown in Fig. 2(a) while time
lags are represented in Fig. 2(b).

Amplitude and time lag of heat flux oscillations were
also calculated at nodal points on the surfaces with
convective boundary conditions specified.

In regions where one-dimensional fields develop.
there exists good agreement between the values of tem-
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perature and heat flux thus calculated and the analytical
solutions available for one-dimensional composite
layers [1.5].

Thermal wares in corner junctions

Finite clement analyses of thermal wave distribu-
tions in building components are used. in the following
example. to illustrate the effects of thermal bridges on
heat gains by conduction through multi-layered ex-
terior walls.

Here we investigate the thermal behaviour of two
different corner junctions. In the first construction only
concrete is utilized in the corner region. In the second
construction instead. polystyrene insulation is not in-
terrupted in the corner region.

In both cases the same mesh. with 15 parabolic
elements and 62 nodal points. is used (see Fig. 3). The
same values of thermal properties and transfer par-
ameters referred to in the previous example are chosen.
In particular we have again:

external surface: x = 25W:m?- K. |0, = 20 C.
0o =0.00=727%x10 *rad-s:
-internal surface: x = 15SW.m*-K. |0, =0 C.

The results obtained are reported in Fig. 4. As it can
be seen. the amplitude of temperature oscillations in
the corner region is dramatically reduced by the
polystyrene insulation. As a consequence. the ampli-
tude of heat flux oscillations at the internal edge is
reduced by a factor of five with respect to the completely
insulated construction.

Amplitude and time lag of temperature oscillations
can be determined also using finite elements as sug-
gested in [ 7] for transient field problems.

Obviously. step-by-step procedures are not a good
choice in the solution of quasi-stationary problems.
However. in the present context they allow a com-
parison of well established numerical techniques with
the direct method proposed in this paper.

Reference was made to the not completely insulated
construction and calculations were carried on for three
onc day temperature cycles. starting from constant
temperature values and using 300s time-steps. After
48 h. initial conditions do not have any influence on

Table 1. Analytical (AN) and finite element (FE) solutions compared for boundary conditions
of the first kind: 1| = 1 C. oy = 0 and Pd = &»L? « = 100; and third kind: 16,1 = 1 C. ¢, =0,

Bi = oLk = 10 and Pd = 100

Ist kind b.c.

3rd kind b.c.

XL ol € olrad) W) ofrad)

AN FL AN FE AN FE AN FE
0.0 1.00000 1.00000 0.00000  0.00000 0.54120 0.54424 0.39270 0.39264
0.1 0.49307 0.49453 0.70711  0.70653 0.26685 0.26914 1.0998 1.0992
0.2 027312 0.24016 1.7172 1.4333 0.13157 0.13070 1.8069 1.8259
0.3 0.11987 0.11876 21198 2.1398 0.06487 0.06463 25140 25324
04 0.05910 0.05767 2.8293 2.8667 0.03198 0.03138 32213 32593
0.5 0.02916 0.02854 3.5361 3.5737 0.01578 0.01553 39288  3.9663
0.6 0.01441 0.01389 4.2406 4.2981 0.00780 0.00756 4.6333  4.6907
0.7 0.00704 0.00681 4.9368 49936 0.00381 0.00371 53296 5.3862
0.8 0.00330 0.00314 5.6761 5.7497 0.00178 0.00171 6.0688  6.1423
0.9 0.00184 0.00174 6.5913 6.6660 0.00099  0.00095 6.9840  7.0586
1.0 0.00170 0.00123 7.0711 0.00092 0.00087

7.1664

7.4638  7.5590
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FiG. 3. Thermal waves in a corner junction. The same finite element mesh (15 parabolic elements and
62 nodal points) is used to study both the insulated and the not completely insulated construction.
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FiG. 4. Thermal waves in a corner junction. Boundary conditions and thermal property values are the

same referred to in Fig. 2 (a) and (b) Amplitude and time lag of temperature oscillations in the not

completely insulated construction. {c) and (d) amplitude and timc lag of temperaturc oscillations in the
insulated construction.
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the first three significant figures of computed tempera-
ture values. Thus from that time, amplitude and time
lag of temperature oscillations can be confidently
compared with those obtained from the direct solution.
The results are presented in Table 2. where the rep-

Table 2. Standard step-by-step (5) and direct (D) finite
clement solutions are compared for the representative
points I VII shown in Fig. 3. The not completely insulated

corner junction is considered

[0 Cy 18]

Point S D S D

1 17.97 17.96 2328 2327
11 15.97 1597 5014 5013
1 14.11 14.11 7808 7807
v 12.50 12.50 10 168 10 167
\Y 1091 1091 12331 12 329
vl 7.103 7.102 16 483 16 480
VII 3.710 20212 20209

371

resentative points I- VII shown in Fig. 3 are considered.
As it can be seen, agreement is exceedingly good.

Comparison of computing times is very much in
favour of the direct solution technique that uses about
one tenth of the CPU time required by the step-by-step
procedure.

CONCLUSIONS
Quasi-stationary problems involving periodic
boundary conditions can be formulated in such a way
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as to allow a direct solution without the use of recur-
rence relations.

Accuracy and versatility of this technique has been
demonstrated in the context of finite clement analvses
with reference to several applications of great scientitic
and practical interest.
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DETERMINATION DES DISTRIBUTIONS D'ONDE THERMIQUEL
PAR LA METHODE DES ELEMENTS FINIS

Résumé — Des problémes de conduction thermique quasi stationnaire sont formulés de telle sorte qu'unc

solution est obtenue directement par la méthode des éléments finis sans le recours a des relations de

récurrence. La précision et la flexibilité de la technique proposée sont illustrées par différents exemples
d’application.

BESTIMMUNG WELLENFORMIGER TEMPERATURVERTEILUNGEN
MIT HILFE DER METHODE FINITER ELEMENTE

Zusammenfassung—Es werden quasi-stationare Warmeleitprobleme so formuliert, daB cine direkte

Losung mit Hilfe der Methode finiter Elemente mdglich ist, ohne daB Rekursionsformeln verwendet

werden miissen. Die Genauigkeit und Vielseitigkeit der vorgeschlagenen Mcthode wird anhand mehrerer
Anwendungsbeispicle aufgezeigt.

PACHYET PACIPEJEJIEHHS TEIUIOBOH BOJIHbI
METOOOM KOHEYHBIX 3JIEMEHTOB

ANROTRIMA — 331344 KBA3HCTALIMOHAPHON TENNONPOBOAHOCTH CHOPMYJIHPOBAHLI TakHM 0b6pa3oM,

YTO OHH JOMYCKAIOT BENOCPEACTBEHHOE PELIEHHE METOI0OM KOHEYHOrO 3/ieMeHTa 6e3 MCnonb30BaHUS

PEKYPPEHTHBIX OTHOIWECHHH. TOYHOCTb H YHMBEPCANBHOCTb MPEMNOKEHHOTO METOJa WI/LUTIOCTPHPY-
K0TCA HA NPAKTHYECKUX IPHMEpaXx.



